

CERTIFICATE OF ACCREDITATION

ANSI-ASQ National Accreditation Board

500 Montgomery Street, Suite 625, Alexandria, VA 22314, 877-344-3044

This is to certify that

Wireless Telecom Group 25 Eastmans Road Parsippany, New Jersey 07054

has been assessed by ANAB and meets the requirements of international standard

ISO/IEC 17025:2017

while demonstrating technical competence in the field of

CALIBRATION

Refer to the accompanying Scope of Accreditation for information regarding the types of calibrations to which this accreditation applies.

AC-2619
Certificate Number
ANAB Approval

Certificate Valid: 09/25/2018-09/25/2020 Version No. 001 Issued: 09/25/2018

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

Wireless Telecom Group

25 Eastmans Road
Parsippany, New Jersey 07054
George Cutler 973 386 9696

gcutler@wtcom.com www.wirelesstelecomgroup.com

CALIBRATION

Valid to: September 25, 2020 Certificate Number: AC-2619

Electrical RF/Microwave

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
RF Power Sensors Calibration Factors	0 dBm (1 to 10) MHz (0.01 to 10) GHz (10 to 18) GHz	1.1 % of reading 1.3 % of reading 1.6 % of reading	Tegam F1130 Power Standard
RF Power Sensors Linearity 1 GHz	0 dBm (-50 to 0) dBm (0 to 20) dBm	0.046 dB 0.11 dB + 0.006 dB/dB 0.048 dB + 0.006 dB/dB	Boonton Model 2530 Calibrator
RF Power Sensors Reflection Coefficient ¹	$\geq 0 \mid \Gamma \mid \leq 0.3$ $\geq 1 \rho \leq 1.88$ (0.01 to 10) GHz (10 to 18) GHz	0.023 lin 0.028 lin	Anritsu 560-98KF50 SWR Tester
RF Power Meters Linearity (Source) 1 GHz	0 dBm (-50 to 0) dBm (0 to 20) dBm	0.046 dB 0.11 dB + 0.006 dB/dB 0.048 dB + 0.006 dB/dB	Boonton Model 2530 Calibrator
RF Power Meters Linearity (Measure) 1 GHz Calibrator Output	(-34 to -20) dBm (-20 to 20) dBm	0.2 dB + 0.006 dB/dB 0.08 dB + 0.006 dB/dB	Boonton Model 4532A Power Meter w/ 51075 Sensor
RF Power Meters 1 GHz Calibrator Output	0 dBm	3.8 dB	HP 432A Power Meter w/ 478A H84 Thermistor Mount
Noise Sources ENR	(5, 15, 21) dB (0.01 to 8) GHz (8 to 26) GHz (26 to 40) GHz	0.17 dB 0.23 dB 0.31 dB	HP346CK01, HP346C Noise Standards, Keysight PNA-X Network Analyzer

Electrical RF/Microwave

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)		Reference Standard, Method, and/or Equipment
	$\geq 0 \mid \Gamma \mid \leq 0.3$ $\geq 1 \rho \leq 1.88$			HP346CK01, HP346C
Noise Sources	(0.01 to 2) GHz	Į.	0.097 lin	Noise Standards,
Reflection Coefficient ¹	(2 to 16) GHz	1	0.14 lin	Keysight PNA-X
	(16 to 26.5) GHz	and the second	0.18 lin	Network Analyzer
	(26.5 to 40) GHz	A CONTRACTOR OF THE PARTY OF TH	0.17 lin	-

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. Unitless linear measure.
- 2. This scope is formatted as part of a single document including Certificate of Accreditation No. AC-2619.

www.anab.org